A Three-dimensional Deflagration Model for Type Ia Supernovae Confronted with Observations
نویسندگان
چکیده
A simulation of the thermonuclear explosion of a Chandrasekhar-mass C+O white dwarf, the most popular scenario of a type Ia supernova (SN Ia), is presented. The underlying modeling is pursued in a self-consistent way, treating the combustion wave as a turbulent deflagration using well tested methods developed for laboratory combustion and based on the concept of ‘large eddy simulations’ (LES). Such consistency requires to capture the onset of the turbulent cascade on resolved scales. This is achieved by computing the dynamical evolution on a 10243 moving grid, which resulted in the best-resolved three-dimensional SN Ia simulation carried out thus far, reaching the limits of what can be done on present supercomputers. Consequently, the model has no free parameters other than the initial conditions at the onset of the explosion, and therefore it has considerable predictive power. Our main objective is to determine to which extent such a simulation can account for the observations of normal SNe Ia. Guided by previous simulations with less resolution and a less sophisticated flame model, initial conditions were chosen that yield a reasonably strong explosion and a sufficient amount of radioactive nickel for a bright display. We show that observables are indeed matched to a reasonable degree. In particular, good agreement is found with the light curves of normal SNe Ia. Moreover, the model reproduces the general features of the abundance stratification as inferred from the analysis of spectra. This indicates that it captures the main features of the explosion mechanism of SNe Ia. However, we also show that even a seemingly best-choice pure deflagration model has shortcomings that indicate the need for a different mode of nuclear burning at late times, perhaps the transition to a detonation at low density. Subject headings: Stars: supernovae: general – Hydrodynamics – Instabilities – Turbulence – Methods: numerical
منابع مشابه
Three-Dimensional Delayed-Detonation Model of Type Ia Supernova
We study a Type Ia supernova explosion using large-scale three-dimensional numerical simulations based on reactive fluid dynamics with a simplified mechanism for nuclear reactions and energy release. The initial deflagration stage of the explosion involves a subsonic turbulent thermonuclear flame propagating in the gravitational field of an expanding white dwarf. The deflagration produces an in...
متن کاملMulti-dimensional numerical simulations of type Ia supernova explosions
The major role type Ia supernovae play in many fields of astrophysics and in particular in cosmological distance determinations calls for self-consistent models of these events. Since their mechanism is believed to crucially depend on phenomena that are inherently three-dimensional, self-consistent numerical models of type Ia supernovae must be multi-dimensional. This field has recently seen a ...
متن کاملDeflagrations and detonations in thermonuclear supernovae.
We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate...
متن کاملThree-Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae
We report the results of a series of three-dimensional (3-D) simulations of the deflagration phase of the gravitationally confined detonation mechanism for Type Ia supernovae. In this mechanism, ignition occurs at one or several offcenter points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point opposite breakout on the ...
متن کاملDetonating Failed Deflagration Model of Thermonuclear Supernovae Ii. Comparison to Observations
We develop and demonstrate the methodology of testing multi-dimensional supernova models against observations by studying the properties of one example of the detonation from failed deflagration (DFD) explosion model of thermonuclear supernovae. Using time-dependent multi-dimensional radiative transfer calculations, we generate the synthetic broadband optical light curves, near-infrared light c...
متن کامل